import numpy as np
# 只考虑离散值
class NaiveBayesClassifier:
def __init__(self,n_classes=2):
self.n_classes=n_classes
self.priori_P={}
self.conditional_P={}
self.N={}
pass
def fit(self,X,y):
for i in range(self.n_classes):
# 公式 7.19
self.priori_P[i]=(len(y[y==i])+1)/(len(y)+self.n_classes)
for col in range(X.shape[1]):
self.N[col]=len(np.unique(X[:,col]))
self.conditional_P[col]={}
for row in range(X.shape[0]):
val=X[row,col]
if val not in self.conditional_P[col].keys():
self.conditional_P[col][val]={}
for i in range(self.n_classes):
D_xi=np.where(X[:,col]==val)
D_c=np.where(y==i)
D_cxi=len(np.intersect1d(D_xi,D_c))
# 公式 7.20
self.conditional_P[col][val][i]=(D_cxi+1)/(len(y[y==i])+self.N[col])
else:
continue
def predict(self,X):
pred_y=[]
for i in range(len(X)):
p=np.ones((self.n_classes,))
for j in range(self.n_classes):
p[j]=self.priori_P[j]
for col in range(X.shape[1]):
val=X[i,col]
for j in range(self.n_classes):
p[j]*=self.conditional_P[col][val][j]
pred_y.append(np.argmax(p))
return np.array(pred_y)
# 连续值
class NaiveBayesClassifierContinuous:
def __init__(self,n_classes=2):
self.n_classes=n_classes
self.priori_P={}
def fit(self,X,y):
self.mus=np.zeros((self.n_classes,X.shape[1]))
self.sigmas=np.zeros((self.n_classes,X.shape[1]))
for c in range(self.n_classes):
# 公式 7.19
self.priori_P[c]=(len(y[y==c]))/(len(y))
X_c=X[np.where(y==c)]
self.mus[c]=np.mean(X_c,axis=0)
self.sigmas[c]=np.std(X_c,axis=0)
def predict(self,X):
pred_y=[]
for i in range(len(X)):
p=np.ones((self.n_classes,))
for c in range(self.n_classes):
p[c]=self.priori_P[c]
for col in range(X.shape[1]):
x=X[i,col]
p[c]*=1./(np.sqrt(2*np.pi)*self.sigmas[c,col])*np.exp(-(x-self.mus[c,col])**2/(2*self.sigmas[c,col]**2))
pred_y.append(np.argmax(p))
return np.array(pred_y)
if __name__=='__main__':
X = np.array([[0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0],
[2, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1],
[1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0],
[1, 1, 1, 1, 1, 0], [0, 2, 2, 0, 2, 1],
[2, 2, 2, 2, 2, 0], [2, 0, 0, 2, 2, 1],
[0, 1, 0, 1, 0, 0], [2, 1, 1, 1, 0, 0],
[1, 1, 0, 0, 1, 1], [2, 0, 0, 2, 2, 0],
[0, 0, 1, 1, 1, 0]])
y = np.array([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])
X_test=np.array([[0, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 1, 0], [1, 0, 1, 1, 1, 0],
[1, 1, 0, 0, 1, 1], [2, 0, 0, 2, 2, 0],
[0, 0, 1, 1, 1, 0],
[2, 0, 0, 2, 2, 0],
[0, 0, 1, 1, 1, 0]
])
naive_bayes=NaiveBayesClassifier(n_classes=2)
naive_bayes.fit(X,y)
print('self.PrirP:',naive_bayes.priori_P)
print('self.CondiP:',naive_bayes.conditional_P)
pred_y=naive_bayes.predict(X_test)
print('pred_y:',pred_y)
Previous

美好的回忆,似乎也可以变成梦魇
2020-09-01
Next

def quicksort(arr):
if len(arr)<2:
return arr
else:
curr = arr[0] ##
2020-04-30