Problem description
Given n non-negative integers a1, a2, …, an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
Example
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
Solution
可将问题视为面积最大化问题,即将长和宽最大化
首先将左右两边作为起始点,左点索引值为l,右点索引值为r,底边长度为r-l,此时
底边长度为最大值当左边的值小于右边的值时,面积为左边的值乘以底边,并且左边索引往右移动一位,即l+1
反之,面积为右边的值乘以底边,并且右边索引往左移动一位,即r-1
- 比较每次的面积area, if area > maxArea, 则maxArea = area
class Solution:
def maxArea(self, height: List[int]) -> int:
maxArea = 0
length = len(height)-1
l = 0
r = length
for i in range(0,length):
if height[l] > height[r]:
area = height[r]*(r-l)
r = r-1
else:
area = height[l]*(r-l)
l = l+1
if area > maxArea:
maxArea = area
return maxArea